
International Journal of Engineering Science Invention (IJESI)

ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726

www.ijesi.org || PP. 54-58

One Day National Conference On “Internet Of Things - The Current Trend In Connected World” 54 | Page

NCIOT-2018

A Survey of Approaches in Versioning Adapted for Service

Oriented Architecture based Systems

Paul Arokiadass Jerald M
 1

1
(*Research Scholar, Manonmaniam Sundaranar University, Tirunelveli).

Abstract: Service oriented architecture is essentially a collection of services, where these collective services

communicate with each other. Services have to be connected with each other based upon their requirements,

which involve either simple data passing or involving two or more combined services.

Change in business conditions and technological advancements forces service consumers to seek and adapt to

newer versions. In legacy systems changes were dealt with on an application-by-application basis mostly based

on the whole software. Since SOA is based on loosely coupled services, and the nature of the architectural style,

adapting to changes is simple compared with legacy systems. As a result, business requirements changes can

often be implemented by either changes to existing processes or creation of new enterprise business processes

based on the existing services. Versioning is normally used to indicate a change in service or the methodology

in which a service is described.

The aim of this paper is to provide an overview of the different versioning methods that are proposed and

currently available with respect to the usage in service oriented design, development.

Keywords: Services, Service Oriented Architecture, Versioning,

I. Introduction
Service Oriented Architecture (SOA) is an evolution of distributed computing which is designed to

allow the interaction of loosely coupled software components, called “services”, across a network. Applications

are created from a composition of these services, and the services can be shared among multiple applications

and by many consumers.

If there is a constant in IT implementation, it is change. As in the case of all software, Versioning is an

important aspect of web service development too, particularly in complex mission-critical systems and in

service-oriented architectures (SOA). Versioning is important because web services evolve over time (Vinoski,

2004). It is always necessary to maintain more than one version of a single service interface.

In SOA, versioning is also related to the development of reusable services, which is one of the key

objectives of SOA. Reusable services are usually not developed in a single phase but they are developed in

several iterations. In each iteration, the service is enhanced to be better suited for reuse. Enhancements most

likely require changes to the interface and/or to the behavior of the service.

“Versioning assumes simultaneous existence of multiple implementations of the same thing, with every

implementation distinguishable and individually addressable. In the case of SOA, service versioning equates to

coexistence of multiple versions of the same service, which allows each consumer to use the version that it is

designed and tested.” [1]

II. Motivation
Change is constant and as all software require maintenance and enhancement, so is the case for Service

oriented architected based systems. As in the case of legacy systems it is necessary to maintain versions of the

different services that evolve due to change in requirements or error detection. Versioning in SOA has received

more attention from the research and vendor communities, because the stability of service interfaces is part of

the agreement (formal or informal) between service providers and consumers.

Change Management and versioning becomes vital and important because:

 Deployed service-oriented systems will have to be maintained and evolved with respect to technology up

gradation, service requirement, and

 Legacy systems will migrate to SOA environments to make their legacy functionality available to other

systems.

The work usually involves the versioning of Services/Contract, and not other components of a service-

oriented system. Proper versioning is necessary because, it is necessary to identify an old service and the new

service, since a service consumer can still be using a older version, when more consumers would have started

using a newly deployed service.

A Survey of Approaches in Versioning Adapted for Service Oriented Architecture based Systems

One Day National Conference On “Internet Of Things - The Current Trend In Connected World” 55 | Page

NCIOT-2018

Figure 1: Research Taxonomy in SOA

III. Soa And The Soa Research Taxonomy
Service-Oriented Architecture (SOA) (Newcomer and Lomow, 2005; Erl, 2009) is an architectural

style for developing software applications that use services as their building blocks. Web services (Schmelzer et

al., 2002; Josuttis, 2007) are application components which are self-contained, self-describing and are used by

other applications. These are both platform and language

Web services extend the World Wide Web infrastructure to provide the means for software to connect

to other software applications. Applications, access Web services via ubiquitous Web protocols and data formats

such as HTTP, XML, and SOAP, with no need to worry about how each Web service is implemented. Web

services combine the best aspects of component-based development and the Web.

As in traditional software development, SOA development has also been prescribed with a standardised

development lifecycle. Versioning normally evolves as a result of a need in change or detection of deteriorating

Quality of Service. Hence versioning normally falls in the maintenance stage of SOA development. Figure.1

shows the SOA research taxonomy[2], in which the Versioning of service is dealt within the Maintenance and

Evolution of the Engineering phase.

The first paragraph under each heading or subheading should be flush left, and subsequent paragraphs

should have a five-space indentation. A colon is inserted before an equation is presented, but there is no

punctuation following the equation. All equations are numbered and referred to in the text solely by a number

enclosed in a round bracket (i.e., (3) reads as "equation 3"). Ensure that any miscellaneous numbering system

you use in your paper cannot be confused with a reference [4] or an equation (3) designation.

IV. Versioning Methods Used In Soa
Although versioning is important in SOA, not much versioning methods related to SOA have related with

versioning in SOA have been analysed and their features have been listed below:

4.1 [5]Process level and scope level versioning

 The versioning model used is :

http://www.uni-mb.si/book/1/0

 where 1 stands for major version and

 0 stands for minor version

The features, advantages and limitations of this versioning model is described in table 1.

A Survey of Approaches in Versioning Adapted for Service Oriented Architecture based Systems

One Day National Conference On “Internet Of Things - The Current Trend In Connected World” 56 | Page

NCIOT-2018

4.2 [6] Three digit Versioning
In this versioning model Rainer Weinreich, Thomas Ziebermayr, Dirk Drahein,, have proposed model uses a 3

digit versioning method which is of the form:

major.minor.micro

Example : http://.../subsytem_U_V1_1/Service_X

Major - incompatible version

Minor - compatible changes

Micro - change of service implementation (does not affect published interface)

The features, advantages and limitations of the 3 digit versioning model is described in Table 1.

4.3 Ken Laskey URI Based Approach [7]

The proposed versioning is URI based. The attributes of the version are embedded in the URI which is of the

form:

http://a.b.c/services1/20090601/....

The features, advantages and limitations of the URI based model is described in Table 1.

4.4 Compound Version Indentifier [8]

Michael Poulin in his model has proposed a Policy based version control for SOA services.

A Compound Version Identifier (CVI) discriminates between the version visible to the clients and the

"assembly" of the versions of individual service's components, interfaces, and elements.

 <srv>.<nbc>.<bwc>.<rel>

• srv is an element reflecting the major version of the service as a whole. Changes in this element represent

significant changes in the service lifecycle that may not be backward compatible.

• nbc is an element that represents a version state of the major version that is not backward compatible.

• bwc is an element indicating an extension or modification in service functionality. It's strictly backward

compatible.

• rel is an element showing little backward-compatible changes like bug fixes.

4.5 [9]Greg Flurry, 2008, Service versioning in SOA, IBM WebSPhere TechJournal.

The proposed model in this version is defined as an identifier, abbreviated as “Nx.y”

defined as <major.minor>

• Backward compatible changes cause the <minor> number to increment.

• Backward incompatible changes cause the <major> number to increment and the <minor> number to reset

to 0.

4.6 Other relevant work

While implementing or controlling the versioning of web services, it is also necessary to follow the

recommendations of standards organizations related to The World Wide Web Consortium (W3C). The W3C

provides the beginnings of a semantically annotated WSDL document called SAWSDL, which would give

explicit versioning capabilities to WSDL documents [10]. OASIS attempts to address the versioning problem in

their WSDM MOWS document, although it is more of an exploratory paper [11]. IBM produced the WSLA

specification that offered a way to represent QoS characteristics, but this work was not continued [12].

V. Factors To Be Considered During Selection Of Version
Whenever a new version of the service is available it is necessary that the new version has to be

registered so as to enable other service seekers to access the new version. It is also necessary that the new

version has to be published and adhere to the industry standards. While enforcing it to the service consumer it is

necessary to ensure that it has the following properties :

 Should be backward Compatible.

 Should be loosely coupled.

 Should be used both by Version aware and Version unaware systems.

 Version placeholder which automatically redirects to new version to be introduced.

 Enabled with a version history tracker.

Should not be domain specific.

A Survey of Approaches in Versioning Adapted for Service Oriented Architecture based Systems

One Day National Conference On “Internet Of Things - The Current Trend In Connected World” 57 | Page

NCIOT-2018

Table 1: Features of available Versioning Method

VI. Conclusion
Every service will have to undergo a change and a newer version becomes inevitable. While

implementing newer versions, versioning methods are adapted. Every versioning method has a shortcoming and

there is always a scope for improvement. Service versioning is a hot topic that has generated a broad range of

curiosity from a variety of sources and above all versioning requirement will fall into new documents which

extend existing data constructs and message enhancements. In loosely-coupled environments it is not possible to

instantly upgrade all service consumers to use the latest version of a service interface. We have to maintain the

older versions of the service interface as well.

This paper has compared a few popular versioning methods that were suitable for web service. This

study will provide an insight and make a study on the versioning methods and propose a new versioning method

which can be implemented on all services. A good versioning method will enhance the Quality of Service such

as storage space, bandwidth, elimination of redundancy etc.

References
[1]. Boris Lublinsky “Versioning in SOA”. Microsoft Architect Journal. msdn2.microsoft.com/en-us/arcjournal/bb491124.aspx

[2]. Grace A. Lewis, Dennis B. Smith, Ned Chapin, Kostas Kontogiannis, 2009, Proceedings of the 3rd International Workshop on a

Research Agenda for Maintenance and Evolution of Service-Oriented Systems (MESOA 2009)
[3]. Philipp Leitner, Anton Michlmayr, Florian Rosenberg, Scharam Dustdar, 2008, IEEE International Conference on Services

computing.
[4]. John Evdemon, 2005, Principles of Service Design:Service Versioning. Microsoft Corporation.

[5]. M.B. Juric, A. Sasa, I. Rozman, WS-BPEL Extensions for Versioning, Information and Software Technology, Volume 51, Issue 8,

2009, pp. 1261-1274.

[6]. Rainer Weinrich, Thomas Ziebermayr, Dirk Drahein, 2007, A Versioning model for Enterprise Services. In 21st IEEE Conference

on Advanced Information Networking and Applications Workshop.

[7]. Kenneth Laskey, “Considerations for versioning SOA Resources”, In IEEE, Proceedings of the Enterprise Distributed object
computing conference Workshop, 2008.

[8]. Michael Poulin, 2006, Service Versioning For SOA : Policy-based version control for SOA services, In SOA World Magazine.

http://soa.sys-con.com/node/250503.
[9]. Greg Flurry, 2008, Service Versioning in SOA, White paper from IBM Software group.

http://www.ibm.com/developerworks/websphere/techjournal/0810_col_flurry/0810_col_flurry.html

[10]. World Wide Web Consortium. Semantic Annotations for WSDL and XML Schema. http://www.w3.org/TR/sawsdl (2007).
[11]. OASIS. Web Services Distributed Management: Management of Web Services (WSDM-MOWS) (Draft). http://www.oasis-

open.org/committees/download.php/5664/wd-wsdm-mowsversioning (2004).

A Survey of Approaches in Versioning Adapted for Service Oriented Architecture based Systems

One Day National Conference On “Internet Of Things - The Current Trend In Connected World” 58 | Page

NCIOT-2018

[12]. Ludwig, H., Keller, A., Dan, A., King, R. P., & Franck, R. Web Service Level Agreement (WSLA) Language Specification. IBM

Corporation, 2003. http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

[13]. P. Ciccarese, S. Soiland-Reyes, K. Belhajjame, A. J. Gray, C. Goble, and T. Clark, "PAV ontology: provenance, authoring and
versioning," Journal of biomedical semantics, vol. 4, p. 37, 2013.

[14]. J. Mwebaze, D. Boxhoorn, I. Rai, and E. A. Valentijn, "Supporting dynamic pipeline changes using Class-Based Object Versioning

in Astro-WISE," Experimental Astronomy, vol. 35, pp. 157-186, 2013.
[15]. V. Krishnamurthy, "Versioning Based Dynamic Reconfiguration for SOA Applications," Research Journal of Applied Sciences,

Engineering and Technology, vol. 9, pp. 926-934, 2015.

[16]. A. Kant and S. Sharma, "Applications of vedic multiplier designs-A review," in Reliability, Infocom Technologies and Optimization
(ICRITO)(Trends and Future Directions), 2015 4th International Conference on, 2015, pp. 1-6.

[17]. Z. Feng, D. K. Chiu, and K. He, "A service evolution registry with alert-based management," in Service Science and Innovation

(ICSSI), 2013 Fifth International Conference on, 2013, pp. 123-130.
[18]. W. Zuo, A. N. Benharkat, and Y. Amghar, "Change-centric model for web service evolution," in Web Services (ICWS), 2014 IEEE

International Conference on, 2014, pp. 712-713.

[19]. K. Chiponga, P. Tarwireyi, and M. O. Adigun, "A version-based transformation proxy for service evolution," in Adaptive Science &
Technology (ICAST), 2014 IEEE 6th International Conference on, 2014, pp. 1-5.

[20]. S. Sohan, C. Anslow, and F. Maurer, "A case study of web API evolution," in Services (SERVICES), 2015 IEEE World Congress

on, 2015, pp. 245-252.
[21]. H. Cai and L. Cui, "MultiGranular: An effective Service Composition Infrastructure for Multi-tenant Service Composition,"

International Journal of Multimedia and Ubiquitous Engineering, vol. 9, pp. 171-182, 2014.

